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Arbitrary distributions of finite molecular-mass homopolymers are treated as one-phase 
solutions of chain ends and high polymers in order to derive an entropic relation for the 
dependence of their glass transition temperatures on the number-average degree of 
polymerization. Absolute predictions of this equation from high molecular-mass and 
dimer properties are found to be in good agreement with dilatometric transition 
temperatures for polystyrene. The theoretical equation is generalized to allow for the 
characterization of chain ends by properties other than those of dimers. An initial 
approximation to the entropic expression is obtained by neglect of the difference 
between chain-end and high-polymer transition increments of heat capacity. Two 
subsequent approximations arise from a series expansion of logarithmic functions. In 
order of decreasing accuracy these three approximations are: a new form of the 
Ueberreiter-Kanig equation, a logarithmic expression, and a new form of the 
Fox-Flory  relation. 

1. Introduction 
The dependence of glass transition behaviour on 
degree of polymerization for an homologous series 
of polymers presents a problem of technological 
interest in connection with the handling and end- 
use conditions of polymeric materials. Funda- 
mental aspects of the phenomenon are of intrinsic 
scientific concern within the general topic of 
number-dependent transitions. Equations presently 
used to describe the effect of molecular mass on 
glass transition temperatures derive principally 
from three sources: dilatometric studies of volume- 
temperature relations as a function of molecular 
mass [1, 2] ,  associated theoretical discussion [1 -  
6], and the Gibbs-DiMarzio statistical thermo- 
dynamic theory for equilibrium properties of 
amorphous polymers [7]. Based upon dilato- 
metric data for polystyrene (PS), Fox and Flory 
[1] proposed a linear dependence of Tg on re- 
ciprocal degree of polymerization, n -x . This de- 
pendence can be derived from the free-volume 
hypothesis of glass formation in conjunction with 
some primary assumptions about the contribution 

of chain ends to specific volume [1, 4 - 6 ] ,  and 
also from the assumption that a principle of corre- 
sponding states can be applied to the effect of 
molecular mass on glass transition temperatures 
[8]. Further, a theory for the glass transition as 
an outcome of chain-segment restriction due to 
van der Waals forces and counteractive thermal 
scissoring motion [9] gives results consistent with 
the Fox-Flory  relation, although limitations of 
the model make it inappropriate for the low 
molecular-mass region. Experimental evidence and 
theoretical discussion in support of the Fox-Flory  
relation is generally limited to intermediate mol- 
ecular masses and above: a dilatometric study of 
PS fractions to very low molecular masses by 
Ueberreiter and Kanig [2] gives data better fit by 
a linear relation between Tg -1 and n-1 [2, 3]. 

The Ueberreiter-Kanig dependence, found 
acceptable from the dimer to high-polymer range, 
can be interpreted formally as a chain-end free- 
volume effect [2-4]  andinterms of a corresponding 
states principle [8]. In turn, both of the above 
mentioned dependences differ from an equation 
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derived from the configurational entropy theory 
o f glass formation [7 ], although the Gibbs-DiMarzio 
transcendental relation and the Ueberreiter-Kanig 
expression give a roughly similar non-linear de- 
pendence of Tg on n -1. 

Both the Fox-Flory  and Ueberreiter-Kanig 
equations in present form require dilatometric data 
for their use. Consequently, they are not con- 
venient predictive expressions. Separately, calcu- 
lation of glass transition temperatures from the 
Gibbs-DiMarzio equation requires a value for the 
energy difference between low-lying rotational 
isomeric states (flex energy), the variation of this 
property with degree of polymerization [10], 
and the free-volume fraction at glass transition 
temperatures, taken as independent of chain length. 
In practice, the flex energy is usually approximated 
as constant and its value inferred from the theor- 
etical relation (fit to the experimental high-polymer 
transition temperature) for a suitably chosen free- 
volume fraction*. 

Difficulties such as those touched on in the 
preceding discussion suggest the need for a theor- 
etical clarification of the relation between glass 
transition temperatures and molecular mass, 
leading to predictive equations for the effect in 
terms of properties accessible to direct and con- 
venient experimental measurement. Outlined be- 
low is a phenomenological theory intended to 
meet some of these needs. 

2. Theory 
The glass transition in general appears to be con- 
sistent with a change of state at fixed entropy 
and volume with finite increments in certain first 
derivatives of these variables. Properties necessary 
for use in an entropic theory, such as transition 
temperatures and transition increments of heat 
capacity, can be measured conveniently in auto- 
mated calorimetric devices; consequently, theor- 
etical relations for the effect of molecular mass on 
glass transition temperatures are derived here from 
the entropy of a polydisperse system. For con- 
venience, the isobaric transition in linear homo- 
polymers is considered. 

An arbitrary overall distribution, character- 
ised by the number of molecules n i with degree 
of polymerization i,  can be considered a mixture 
of chain ends and units with properties of the high- 
polymer limit. Chain-end and high-polymer pro- 
perties are distinguished below by the respective 

superscripts e, o. Associated entropies of mixing 
are indicated by superscripts m, and their molecular- 
mass dependence referred to by subscripts i. The 
entropy, S, per mol of mers can then be written as 
the sum 

S En~( i  - -  2)S ~ + 2ZniS_..~ e + y_,z~sm" (1) 

Provided the chemical constitution of chain ends 
is closely related to that of other mers, the excess 
functions AS] a will be given by perfect solution 
(random mixing) formulae. As the distribution of 
molecular masses is fixed, these random mixing 
properties are consequently unchanged at Tg. This 
simplification noted, chain-end (dimer) and high- 
polymer glass transition temperatures T~, T o and 
their corresponding transition increments A ~ ,  
~C~ are defined. These definitions, the condition 
that glass transitions are continuous in the entropy, 
and approximation of heat-capacity transition in- 
crements as temperature-independent combine to 
provide the equation 

AC ~ In T o Z n i ( i  - -  2) + 2~C~ in T~. 

lnTg- 
z , , ( i -  2) + 2Ac; 

(e) 
This expression for the glass transition temperature 
of a general distribution as a function of number- 
average degree of polymerization, in effect an "aver- 
age molecule" representation, can be rewritten in 
terms of the number-average molecular mass, ~/n, 
the mass per mer, ml (here approximated as iden- 
tical for chainend and interior mers) and specific 
transition increments of heat capacity as 

,SC~ + 2rna (AC~,lnTe. -- AC~ ~ 
lnTg - AC~ + 2m, (AC~ -- AC ~ 

(3) 
A discriminating initial test of Equations 2 and 

3 is afforded by a comparison of calculated and ex- 
perimental glass transition temperatures for well- 
characterized distributions made up of polymers 
with substantial differences between dimer and 
high-polymer transition properties. The result of 
such a comparison, for narrow fractions of poly- 
styrene and their binary blends, is given in Fig. 1. 
Calculated and experimental values of Tg are in 
satisfactory agreement. 

*The semi-empirical flex energy so determined has been discussed in some generality in [ 11 ]. 
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Figure i The dependence of glass transition temperatures, Tg, on degree of polymerization, n, for polystyrene. Dilato- 
metric transition temperatures reported by Ueberreiter and Kanig [2] are shown as f'dled circles. The predictions of 

o e o Equation 2 are shown as the ettrve. Data for Equation 2: Tg = 195 K, T ,  ~ = 371 K [2] ; LxCp/Z~Cp = 2.05 [12]. 

Polymers for which dimer properties are either 
unavailable or not readily accessible to measure- 
ment can be included in the theory by a straight- 
forward extension of the derivation leading to 
Equation 2. For a compatible mixture of chain 
ends, degree of polymerization k(>l) ,  and mers 
with high-polymer properties, the glass transition 
temperature is given by 

~ c  ~ 1/, r ~ z~ , (~ -  k) + kzxc~ in r~ 
In Tg = 

A c  o zn~(i - k)  + kAC~ 
7-,n i 

(4) 
where 

~c~  = (k - 2)ZXCgk + 2AC; (S) 

and, as before, transition increments of heat ca- 
pacity are per mol of mers. As it stands, Equation 
4 can be used to interpolate between T ~ and 
T~ and, also, to extrapolate from T~ to Tg e. Similar 
conditions apply to general distributions of the 
homopolymer. 

The effect of molecular mass on transition 
increments of heat capacity can be considered a 

secondary influence on the chain-length depen- 
dence of glass transition temperatures. Conse- 
quently, a physically based first approximation to 
Equation 4 can be obtained by neglect of the dif- 
ference between ACp ~ and ACkp. The relation be- 
tween Tg and number-average degree of poly- 
merization, n, is then 

Secondary approximations to Equation 4 follow 
from a series expansion of a rearranged Equation 6a, 
or use of the binomial theorem for the equivalent 
relation 

k 

_ -  

T~ ] (6b) 

Consistent use of reference transition temperatures 
as denominators for a single-term expansion of 
each In function leads directly from the rearranged 
Equation 6a to the dependence of reciprocal glass 
transition temperatures on h found by Ueberreiter 
and Kanig [2, 3]. This Equation, 

1 1o ) 
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identifies the Ueberreiter-Kanig constant in terms 
of k-mer and high-polymer properties. A similar 
expansion of the In functions with Tg, as denomi- 
nator, leads to the following form of the Fox-Flory  
[1 ] equation 

k o r ,  = (s) 

Again, calculation of the relevant constant requires 
only two transition temperatures and the chain-end 
degree of polymerization. 

The relative accuracy of Equations 6 to 8 with 
respect to their common origin can be established 
by some minor algebra in conjunction with con- 
ditions on the ratios A C ~ / A C  ~ and T ~  In the 
absence of a substantial mass deficiency of chain- 
end mers with respect to their interior counter- 
parts, both ratios would generally exceed unity. As 
a consequence, for all finite ~ > k, glass transition 
temperatures predicted by Equation 6 would be 
above those calculated from Equation 4. Transition 
temperatures given by the modified Ueberreiter- 
Kanig equation would be between those of Equa- 
tions 4 and 6. The modified Fox-Flory  relation 
would give values of Tg greater that those of 
Equations 4 to 7. Therefore, the most accurate of 
the three approximations to Equation 4 would be 
Equation 7 followed by, in order of precedence, 
Equations 6 and 8. This result resolves a largely 
unacknowledged conflict between the functional 
form of the Ueberreiter-Kanig equation and that 
of the Fox-Flory  equation in favour of the former, 
although this does not preclude the possibility of 
rather small quantitative differences between the 
predictions of these expressions and their ante- 
cedents for certain limited ranges of ~. The com- 
pensatory nature of the two formal approximations 
necessary for the derivation of Equation 7 from 
Equation 4 can be significant; for PS the 
Ueberreiter-Kanig constant is 4.87 x 10 -a  K -1 

(T o and T~ from [2] ), in good agreement with the 
curve-fit value of 4.96 x 10 -3 K -1 [3]. 

3. Conclusions 
The prediction of glass transition temperatures for 
homopolymer systems of arbitrary polydispersity 
by means of the theory given here is a straight- 
forward and relatively convenient exercise. Four 
properties are necessary for the primary relation: 
high-polymer and chain-end transition tempera- 
tures and their corresponding transition increments 
of heat capacity. It is not strictly necessary that 

these properties be known for monodisperse 
systems, although for brevity the formal discussion 
has been given in terms of actual rather than 
average high-polymer and chain-end properties. 
Prompted in part by the present lack of data on 
chain-end heat capacity, approximations to the 
general relation have been derived. Of these, an 
equation identical in form to the Ueberreiter- 
Kanig relation is the most accurate. This equation 
requires only the tfigh-polymer glass transition 
temperature and the transition temperature for 
a polymer of known finite number-average molecu- 
lar mass. Therefore, two sufficiently separated tran- 
sition temperatures can serve to predict accurate 
values of Tg for all ~ >~ 2. 

There are clear connections between the theory 
presented here and a recent description of 
composition-dependent glass transition tempera- 
tures for multi-component mixtures of compatible 
polymers [13]. These derive from the tenet that 
homopolymers of arbitrary molecular mass are in 
effect one-phase random mixtures of high polymers 
and chain ends. 
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